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Abstract
The configuration of spectral lines of the axially symmetric charge 2 monopole
is described.
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1. Introduction

SU(2) BPS-monopoles are certain static particle-like solitons in Yang–Mills–Higgs theory in
the Prasad–Sommerfeld limit on R

3. Finiteness of the energy means that the Higgs field at
infinity determines a winding number k, which (in suitable units) is the total magnetic charge of
the monopole. The Bogomolny bound says that the energy of a charge k monopole is bounded
below by 4π |k|. For a fixed charge k > 0, the minima of the energy are, by definition, the
BPS-monopoles of charge k. Henceforth by ‘monopole’ we mean SU(2) BPS-monopole. See
[1, 3, 6] for further details and references.

These minima are solutions of the first order Bogomolny equation. That equation may,
by means of a twistor transform, be reinterpreted as the holomorphicity of an auxiliary rank 2
complex vector bundle over T, the space of all oriented lines in R

3. Finiteness of the energy
means that the bundle, and thus the monopole, is determined by an auxiliary algebraic curve
in T. This is the so-called spectral curve of the monopole; it parameterizes the monopole’s
spectral lines. See [1–3] for further details.

In general, it is hard to read the details of a monopole’s structure from its spectral curve.
For example, though it is easy to see the total energy, since the spectral curve of a charge k
monopole is a k-fold branched cover of P1 in T, for plots of the energy density in R

3, we rely
on numerical methods, even when k = 2.

It is natural to explore the relationship between the geometry of the configuration of the
monopole’s spectral lines and the energy density. It is easy to argue heuristically that spectral
lines pass through regions where the Higgs field ‘changes rapidly’ and hence they go through
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the monopole particles. However, this picture is harder to understand for solutions that are not
‘well-separated’. We now review this briefly in the charge 2 case.

First we recall that T may be identified with the total space of the holomorphic
tangent bundle of P1, which may also be viewed as the space of all affine null planes in
C

3 ∼= H0(P1,O(T)). For a point x in R
3, the corresponding global section of T, which is given

by σx(ζ ) = x · (1 − ζ 2, i(1 + ζ 2),−2ζ ) d/dζ , parameterizes the affine null planes through
x, each of which cuts out a line in R

3 and endows it with a direction. Thus the real section
may be viewed as parameterizing the two sphere of oriented lines that pass through x. (For
a point z ∈ C

3, away from R
3, the picture of the configuration of lines in R

3 determined by
intersection with the affine null planes through z is not quite so simple.)

When k = 2, non-axially symmetric monopoles have elliptic spectral curves. In the
limit as the monopole ‘separates’, the spectral curve approaches degeneration to the pair of
real sections corresponding to the two points m and m′, at distance K/2, from the origin on
the Higgs axis (where K denotes Legendre’s complete elliptic integral of the first kind), see
chapter 7 of [1] for further details. This means that as k −→ 1, the configuration of spectral
lines in R

3 approximates the two ‘stars’ comprising all the lines through m and m′. It is known
(numerically) that the energy density concentrates at these points.

Recall that the spectral curve of the charge 1 monopole at the origin is the zero section;
this gives all the lines through 0. So in terms of the spectral lines, the ‘well-separated’ charge
2 monopole resembles a superposition of charge 1 monopoles located at m and m′. However,
this picture does not persist when the ‘particles’ are not far apart. In particular, in the ‘collision
state’, the spectral curve of a charge 2 axially symmetric monopole, is given, after a rotation
of R

3, by S: η2 +
(

π
2

)2
ζ 2 = 0, see [2]. So it reduces to the two sections given by: η = ±iπ

2 ζ .
These parameterize the two ‘stars’ of ‘spectral affine null planes’ through (0, 0,±iπ/4) ∈ C

3.
As for the energy, it is known numerically in the axially symmetric case to be concentrated

close to the monopole’s harmonic locus, i.e. points in R
3 where the two spectral lines are

orthogonal; this is a toroidal ring, cf [3].
In [5], it is shown that the distribution of energy is elucidated by the behaviour of the

measure induced on the spectral curve by the projection map to P1. This requires further study
when the monopoles are close. It is useful to set down any precise quantitative information
we have about the axially symmetric solution; in this note we set ourselves the simple task of
describing the configuration of its spectral lines. In particular, we give an explicit description
of the harmonic locus.

2. The lines

A point (ζ, η d/dζ ) ∈ T, determines an oriented line in R
3, whose distance from the origin

is |η|/(1 + |ζ |2). Writing ζ = r eiθ , for lines determined by η = ±iπ
2 ζ , this distance is

πr/2(1 + r2), which has maximum value π/4, on the circle r = 1.

Lemma. For the spectral curve S:

(i) when ζ = eiθ , the spectral lines lie in the (x3 = 0)-plane.
(ii) The lines in the (x3 = 0)-plane that are tangent to the circle C, given by (x3 = 0) ∩(

x2
1 + x2

2 = π2/16
)
, are spectral lines.

Proof. For ζ = eiθ , the associated spectral lines have equations given by:

x · (1 − e2iθ , i(1 + e2iθ ),−2 eiθ ) = ± iπ

2
eiθ .

This is simply i(x1, x2) · (−sin θ, cos θ) = x3 ± iπ
4 . �
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Remarks.

(i) Through each point on C there is a unique spectral line; generically for a point in R
3 there

are two. This reflects the fact that C is the real bitangent locus of S.
(ii) C is the singular locus of the ‘asymptotic Higgs field’, see [4].

(iii) Any point on the x3-axis, which is a spectral line, has only that spectral line through it.

Proposition.

(i) For a point P in the (x3 = 0)-plane outside D, the closed disc of radius π/4, the two
spectral lines through P are the lines through P that are tangent to C.

(ii) No spectral line on the (x3 = 0)-plane passes into the interior of D.
(iii) Every spectral line in R

3 intersects D.

Proof. (ii) and (iii) follow from (i). If either were not true it would mean that there was a
point (in the (x3 = 0)-plane) on at least three spectral lines, which is impossible. �

Now consider the spectral lines which pass through the interior of D. The configuration of
spectral lines in R

3 enjoys circular symmetry about the x3-axis, therefore it is sufficient to
understand the behaviour of the spectral lines which pass through the line segment on the
x1-axis beween the origin and x1 = π/4, which we call L.

Proposition.

(i) At the end points of L, the spectral lines coalesce: at x1 = 0, the angle between the lines
is 0, while at x1 = π/4, it is π .

(ii) At every point on L, the spectral lines lie in the plane parallel to the (x1 = 0)-plane.
(iii) The closest point to the origin on any spectral line lies in the (x3 = 0)-plane.

Proof. (i) is already clear. (ii) The directions of the spectral lines through (x1, 0, 0) are given
by solving x1(1−ζ 2) = ± iπ

2 ζ , which gives, for 0 < x1 < π/4: ζ = ± i
4x1

(
π ±

√
π2 − 16x2

1

)
.

Since ζ lies on the imaginary axis, the direction of the spectral line is perpendicular to the
x1-axis. (iii) is now clear too. �

Remark. Note that the angle between the spectral lines at points on L increases monotonically
from 0 to π , as x1 goes from 0 to π/4.

3. The harmonic locus

In [3], the set of points in R
3, where the spectral lines are orthogonal is considered for a

monopole of charge 2. The roots determined by the spectral lines through a point on this
set are harmonically separated: accordingly we will refer to it as the harmonic locus of the
monopole. Let H denote the harmonic locus of the reduced and centred axially symmetric
monopole.

Proposition. H is the torus of revolution swept out by rotating the circle in the (x1, x3)-plane,
of radius π/8

√
2, centred at (3π/8

√
2, 0, 0), about the x3-axis.

Proof. By axial symmetry it is sufficient to inspect H ∩ (x2 = 0). This means first writing
down the roots of x1ζ

2 + (2x3 + iπ/2)ζ − x1 = 0, and x1ζ
2 + (2x3 − iπ/2)ζ − x1 = 0. Setting

the appropriate cross ratio to −1, gives the equation

π4 + π2 (
32x2

3 − 40x2
1

)
+ 256

(
x2

1 + x2
3

)2 = 0
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which is equivalent to{(
x1 − 3π

8
√

2

)2

+ x2
3 − π2

128

}{(
x1 +

3π

8
√

2

)2

+ x2
3 − π2

128

}
= 0. �
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